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On the Interpretability of Neural Network Decoders

Lukas Bodeker,* Luc J. B. Kusters, and Markus Miiller

Neural-network (NN) based decoders are becoming increasingly popular in
the field of quantum error correction (QEC), including for decoding of
state-of-the-art quantum computation experiments. In this work, established
interpretability methods are used from the field of machine learning, to
introduce a toolbox to achieve an understanding of the underlying decoding
logic of NN decoders, which have been trained but otherwise typically operate
as black-box models. To illustrate the capabilities of the employed
interpretability method, based on the Shapley value approximation, an
examplary case study of a NN decoder is provided that is trained for flag-qubit
based fault-tolerant (FT) QEC with the Steane code. The interpretation of
particular decoding decisions of the NN is analysed, by doing so it is revealed
how the NN learns to capture fundamental structures in the information
gained from syndrome and flag qubit measurements, in order to come to a FT
correction decision. Further, it is showed that the understanding of how the
NN obtains a decoding decision can be used on the one hand to identify
flawed processing of error syndrome information by the NN, resulting in
decreased decoding performance, as well as for well-informed improvements
of the NN architecture. The diagnostic capabilities of the interpretability

physical qubit counterparts. Here, impres-
sive breakthroughs in a variety of platforms
including trapped ions,!*3] superconduct-
ing systems!!*22] and neutral Rydberg atom
systems(2*-28] have been achieved. In these
experimental realizations, the FT operation
of error-corrected logical qubits is shown
in different settings, demonstrating key
components for large-scale error-corrected
quantum computation. These active error
correction protocols all have in common
that partial information about erroneous
processes must be processed in order to
determine a recovery operation that — if
successful — yields the preservation of the
logical information. In error correcting
(topological) stabilizer codes,??! the logical
state information of a single qubit is en-
coded non-locally across many qubits. To
detect errors, local parity check operators
are measured, which leave logical informa-
tion untouched. The according measure-

method presented here can help ensure successful application of machine

learning for decoding of QEC protocols.

1. Introduction

Fault-tolerant (FT) quantum error correction (QEC) is a key in-
gredient to suppress error rates of quantum computers to a de-
gree where scalable quantum algorithms can outperform classi-
cal computers.!!! State-of-the-art experiments have demonstrated
QEC close to or even below break-even, below which the error
rates of corrected logical qubits are reduced as compared to their
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ment outcomes form the error syndrome
and can be used to determine a recovery
operation to revoke the error with a certain
probability. The computational cost of de-
coding of the syndrome scales, in general,
exponentially with growing code-size, when
performing optimal decoding that yields the highest suc-
cess probability of revoking the error (maximum likelihood
decoding.[*]) For this reason, depending on the code, there exists
a plethora of efficient decoders of suboptimal performance that
aim at approximating optimal decoding while lowering the com-
putational effort. To illustrate the vibrant field of finding efficient
decoding algorithms, we point out a number of works for two
topological code families of surfacel®!l and color codes.l??] These
decoding approaches!®3~**] are not meant to be a complete list.
Neural network (NN) based decoders form a versatile decod-
ing paradigm, applicable to a wide range of quantum correcting
codes and FT quantum computation protocols.[*=%2] These de-
coders have the advantage of being able to adapt autonomously
to the different noise models of any underlying physical imple-
mentation through learning, which can be based on numerical
simulation or experimental data.’® 75 Furthermore, trained
NN decoders have shown to be capable of generalizing to differ-
ent decoding situations beyond those they have been trained for,
such as, higher code distances or different numbers of syndrome
extraction repetitions.l’® 511 On the other side, the performance
of these decoders is heavily dependent on choosing an appro-
priate NN model and the success of its optimization (training).
The latter in turn depends on the availability of training data
and computational resources for training. The training of a NN
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Figure 1. Opening the black box for a neural network (NN) based decoder:
The interpretability toolbox offers diagnostic tools to (i) gain an under-
standing of how the NN decoder has come to a certain correction decision,
for given error syndrome information, to (ii) supervise and verify the NN’s
internal learning process and to (iii) detect flawed information processing
by the decoder, which otherwise can impede fault-tolerant operation of
noisy QEC codes.

becomes in general a resource-intensive endeavor with growing
size of the NN model. For a readily trained NN on the other hand,
determining a decoding decision is typically straight-forward
and not computationally intensive. Indeed, trained NN decoders
have shown good decoding performance whilst showing small
overhead in terms of classical computations.[** >2]

Moreover, in the field of quantum error correction, the solving
of hard classical processing tasks is not limited to the problem
of conventional decoding but also extends to the protection and
correction of bosonic codes!®® " or the construction of FT cir-
cuits to encode logical states.|®] Naturally, such tasks are potential
fields of application of NNs, where promising results have been
shown to protect bosonic code states!®® ¢’ or to find FT encoding
circuits.[®] These instances exemplify how relevant the utiliza-
tion of NN is in the broader field of quantum error correction
and quantum computation.

A caveat regarding the use of NNs and in particular NN de-
coding is that NN decoders typically act as a black-box, Figure 1
meaning that the input-output relationship of the neural network
is not accessible in the same way as it would be for a human-
designed decoding algorithm. In other words, it is in the gen-
eral case hard to retrace how the NN obtains its decoding result
from the input information. This lack of structural understand-
ing of the decision model when employing NNs is a shortcoming,
which might potentially limit the applicability of this approach, in
particular when operating larger QEC codes under realistic exper-
imental noise and when executing more complex tasks such as
error correction of logical quantum algorithms. Furthermore, the
black-box type decision character of the decoding process could
screen non-optimal performance or the reasons for a failed train-
ing of the NN decoder.

In this work, we investigate interpretability methods for NNs
to open this black-box, as schematically shown in Figure 1. The
techniques we employ are adapted from the field of explainable
machine learning, often referred to as Explainable Artificial Intel-
ligence (XAI),%7! which is a sub-field of machine learning!”?!
focusing on increasing the transparency and interpretability of
machine learning models. The goal here is to provide insights
into how machine learning models make predictions and deci-
sions, in order to check for plausibility and to detect possible mal-
functions of the model.l®71: 7371 In XAl a distinction is made
between local explanation methods!®71:73.75.76.78.79] and global
explanation methods.[# Local explanation methods aim to ex-
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plain individual predictions, while global explanation methods
aim to provide insights into the workings of the model as a whole.
Global explanations are often obtained by aggregating over many
local explanations./””]

In our work, we will focus on a model-agnostic and local
method, the so-called Shapley values!® 8!l for interpreting indi-
vidual decoding outcomes of a NN decoder. These interpreta-
tions are given in terms of an importance score of sub-sets of
the input which in our case are parts of the syndrome infor-
mation. From the individual decoding interpretations, we can
derive global conclusions about the decoder working by analyz-
ing the statistics of the interpretations. This Shapley-value based
method that we adapt for the field of NN decoding is general in
the sense that it can be applied for any kind of NN architecture
that supports backpropagation and any underlying QEC decod-
ing task. This includes in particular recurrent NNs as used in this
work as well as for instance more modern transformer based NN
architecturesl®”- %! that are also used in large language models.
In principle, it can be applied to interpret the NN decoding for
arbitrary QEC codes, at any code distance and any FT protocol
or measurement scheme, provided that a NN has been trained
successfully beforehand. The latter challenge could pose a bottle-
neck for the NN based decoding of larger codes, as the question
of the scalability of the necessary NN training is still an active
research topic.l®] However, if provided with a working NN, the
interpretability methods employed in this work cause a compu-
tational overhead that scales only linearly with the computational
cost of executing a single decoding run.

We show that our interpretability method can be used to certify
the learning success of a NN to perform FT decoding. Interest-
ingly, this learning success can be temporally resolved along the
training of the NN. This allows one to spectate the learning transi-
tion of the NN, first learning simple non-FT decoding strategies,
and later in the training process the discovery and adoption of a
FT decoding behaviour. Furthermore, we can infer whether the
NN has understood how to utilize correlations between X and Z
syndromes, relevant for the correction of phase and bit flip errors,
respectively, to refine the decoding decisions it is making. Apart
from applying the interpretability method to check for desired
properties, we show that the employed interpretability analysis
also enables the identification of unwanted functional behaviour
that the NN can acquire during the training, and which deterio-
rates the decoding performance and can be attributed to overfit-
ting. Such diagnostic element then allows, in a general setting,
for an informed augmentation of the NN decoder to ultimately
improve the logical performance of the underlying error correc-
tion protocol.

For concreteness, we test our interpretability method based on
numerical simulations of a flag-FT®¥2-%* circuit implementation
of a QEC for the distance-3 Steane codel*> 8> 8¢ under circuit level
noise in a quantum memory setting. This choice is motivated by
posing the learning challenge for the NN decoder to combine in-
formation from syndrome as well as from flag qubits, obtained
from various measurement rounds. If this combination of infor-
mation pieces is successfully learned by the NN, it should then
be able to correct for any single fault that occurs during the sta-
bilizer readout, and thereby maintain the FT of the QEC code in
combination with the suitably constructed flag-qubit based syn-
drome readout quantum circuitry. Furthermore, as for other CSS
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codes, in this setting it is possible to study the effect of the cor-
relation between X and Z errors for the decoding decision as the
respective two decoding problems can be solved independently.
Additionally, studying this concrete setting is also motivated by
its near-term experimental relevance.l>*3] In terms of the NN
model we choose for decoding, we work with simple recurrent
NN, as previously used in the QEC decoding literature.[>! These
NN s are employed and trained to classify the logical-flip parity on
the QEC code after T rounds of faulty syndrome measurement.

This manuscript is structured as follows: In Section 2 we ex-
plain the NN decoding paradigm and introduce the exemplary
QEC setting, which we later test on our interpretation method.
In Section 3, we introduce the Shapley value, outline how it can
be calculated and explain how it can be used to derive local as
well as global interpretations. In Section 4, we then present how
the learning progress of the NN decoder is analyzed, focusing on
the NN’s ability to decode fault-tolerantly. In Section 5 we show,
based on a fully trained model, how possible malfunctions of the
NN decoder can be uncovered. Finally, Section 6 provides conclu-
sions and an outlook to potential extensions of the work.

2. Neural Network Decoding

Various NN architectures and approaches for decoding have been
explored.[* #! Given a QEC experiment with T rounds of re-
peated stabilizer measurements, one can for instance provide
the whole space-time syndrome volume!®] as input to the NN
to perform the decoding. For growing code distances and there-
fore large spatial syndrome, these NNs can further be enriched
by sparsely connected network parts as elements of their archi-
tecture to perform a spatially local preprocessing, as it is done in
convolutional NNs.[5% 3% 591 Still, these networks have the caveat
that, after training, they are fixed to a single QEC protocol to-
gether with a syndrome volume of fixed size as input. If one is,
however, faced with a protocol where a variable number of stabi-
lizer measurement rounds is needed, and for which the circuitry
that is run is time-translationally invariant, it is more convenient
being able to pass the syndrome information to the NN sequen-
tially, in a time-resolved way.l>">®>7] Such a procedure is rem-
iniscent of algorithmic decoders that employ a sliding window
to process the syndrome history.[¥ % In order to be able to still
use information of stabilizer measurements at different times,
the NN is required to be equipped with a memory®!! from which
an overall decoding decision can be determined considering the
joint syndrome volume information.

The problem of decoding can be formulated in different ways
for a NN that is to be trained. A microscopic approach would be
to train a NN to determine every fault that has occurred given
the syndrome history. A simplified, but for decoding sufficient,
task for the NN could be to only predict the logical parity of the
accumulated errors. If a NN can predict this logical parity reli-
ably, one could assume that it processes the syndrome informa-
tion correctly into information about the errors internally. We em-
ploy a type of recurrent neural network (RNN) that can process
a variable amount of the syndrome readouts, similar as in the
works.[*6:49:51] The RNN is trained to predict the logical parities
after a variable number of { T;} rounds of stabilizer measurement
such that after the training it will be able to make this prediction
after being fed measurement outcomes from T’ ¢ {T;} rounds
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of stabilizer measurement Figure 3, seel®”! for details about the
network specifications.

Quantum memory experiment— This setting is relevant if one
wants to protect the information encoded in a logical qubit state
|w; ) that is left to idle, while a number T of stabilizer measure-
ment cycles is performed, of which one is shown in Figure 2b for
the Steane code.

For the Steane code, the problem of decoding amounts to a
classification problem, where as input the joint vector of syn-
drome and flag measurements § encodes partial information
about where in the circuit faults have occurred. The task of
the NN is therefore to decide on a logical correction after T
rounds of stabilizer measurements, see Figure 3. To evaluate
the success of the logical correction that is proposed by the
NN, the logical state needs to be brought back to the code
space. The latter can be done by a simple correction based
on the data qubit readout after the T rounds of stabilizer
measurement.

In more formal terms, the decoding is broken up according
to the decomposed error E as E= S- P- P, where S is an ele-
ment of the stabilizer group, P; is a logical operator (including
the identity operator I®"), and P is a ‘pure error’ taking the state
out of the logical subspace. The latter is chosen to have the small-
est possible support, implicating that no logical operator can be
contained in P. As an example based on the Steane code layout in
Figure 2a, consider the error E = X, X, XX, which can be written
as E = I-X; - X;, where one representation of the logical error is
X, = X, X,X; and the pure error that causes a nontrivial syndrome
is given as P = X;. Given only the syndrome information of this
pure error P =X, a decoder would assert a correction C = X;.
Overall, this means that after correction, we are still left with an
uncorrected logical error E - C = X, and therefore a failure of the
memory. Let us assume now that the decoder has access to the
syndrome history of T rounds of stabilizer measurements and
that the error E = X, X, X.X;, is the cumulative error that the data
qubits acquired during this time. The correction of the error may
now be split up as C = C; - Cp, where the “logical correction”
C, = X="'Z""="! can be determined after correcting the pure er-
ror with Cp. The correction of the pure error is conducted based
only on the stabilizer violations after the T rounds of syndrome
extraction, such that the logical state is brought back to the code
space, i.e. [Cp - P, S] = 0 for all elements of the stabilizer group S.
In the example case, we would still get C, = X; as the simple cor-
rection, bringing the state back to the code space, P - C, = I[®". In
general, the correction of the pure error can however also yield a
logical operator. As a consequence, the desired, successful logical
correction, can be written as C; = §" - P; - (C,P). For the remain-
ing error E - C, = X, X,X;, the desired logical correction by the
decoder based on the syndrome history would be C; = X;.

Again, by this treatment, determining C; turns into a classi-
fication of whether a logical bit- or phase-flip has occurred or
not, based on the full syndrome history. Consequently, the logi-
cal parities can be represented as two binary values, which can
be predicted using a neural network that is fed with the syn-
drome flag history. In our simulations, the correction of this
pure error C, is performed by a virtual error correction step
based on a perfect final data qubit readout, from which a syn-
drome can be derived that can be corrected by means of look-
up-table.
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Figure 2. a) The 7, 1, 3] color code. The vertices represent data qubits and the faces represent the X— and Z — type stabilizer generators. The pair of
red plaquette stabilizer generators is indicated as an example, as well as a representation of the logical operators. The other four stabilizer generators
are defined analogously as the green and blue plaquette. b) Measurement schedule for the flagged stabilizer readout. The measurements return the
stabilizer parity and flag information. c) Exemplary flag-based fault-tolerant measurement circuit for the SX stabilizer. The flag qubsit that is coupled
to the ancilla qubit is capable to identify any potentially dangerous error propagations. d) Performance comparison of three fault-tolerant decoding
schemes: look-up table decoder (LUT in blue), dual output recurrent neural network decoder (DRNN in orange) and single output recurrent neural
network decoder (SRNN in green). All decoders show quadratic scaling of the logical error rate p, with the physical error rate p,,, implying the capab|l|ty

of the decoders to operate fault-tolerantly and correct all single faults in the circuit. Error bars are computed as the one-sigma Wilson interval.[®

Fault-tolerant stabilizer measurement— We consider depolariz-
ing circuit level noisel®! with a physical error parameter p,,.
Specifically, we assume noisy qubit initialization and measure-
ment where the outcome is inverted with a probability of 2/3 p,,.
After every single-qubit gate, one of the three single-qubit Pauli
operators {X,Y,Z} is applied with a probability p,,/3. After
every two-qubit gate, one of the 15 two-qubit Pauli operators
{LX, Y, Z}¥\ I® I is applied with a probability p,;,/15. Given
this noise model, a single fault on a measurement ancilla qubit
can propagate onto multiple data qubits. In particular, in the
Steane code no weight-two data qubit error of two Pauli operators
of the same type can be corrected. If this spreading of errors was
not detectable as in the case of using a single physical ancilla for
the readout, the logical information would become irrecoverable.
One example for a fault that causes a weight-two data qubit error
is shown in Figure 5c. We will call this fault class hook errors
in the following. To prevent such hook errors from going unno-
ticed, there exist several measurement schemes which allow for
syndrome extraction while preserving fault tolerance.>%¢! The
scheme of our choicel®? exploits an additional measurement an-
cilla qubit, the so-called flag, that is entangled with a syndrome
ancilla during the stabilizer measurement, see Figure 2c. In this
way, all dangerous hook errors also propagate onto the flag qubit
and cause a nontrivial measurement outcome. When such a flag
is raised during one round of stabilizer measurements, all possi-
ble weight one faults can be corrected if the stabilizer measure-
ments are repeated. The combination of a raised flag and the
syndrome of the subsequent round can unambiguously identify
all possible dangerous error propagations or hook-errors. These
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information-tuples of flag and stabilizer measurement outcomes
are therefore also called hook-signatures and will become impor-
tant to be identified by the decoder. As a result, the employment
of the additional flag qubit enables the fault-tolerance of the over-
all measurement, hence we refer to it as a flag-fault-tolerant read-
out in the following.

Neural network architecture— The recurrent cell we choose
for our RNN is the so-called Long Short Term Memory (LSTM)
unit,!l seel®! for details. It is a reasonably simple and extensively
tested NN element that allows for actively memorizing and for-
getting information based on the input. The latter is a needed
capability to combine measurement outcome information from
various consecutive rounds of syndrome extraction for the decod-
ing decision. In the overall NN, LSTM layers are complemented
with non-recurrent layers. The embedding of the RNN as the de-
coder as well as its inner composition is shown schematically in
Figure 3. The RNN receives syndrome increments and flag bits as
input in a time-resolved and sequential manner. These inputs are
then passed to two consecutive layers of LSTM units that allow
for combining information of spatially and temporally separated
syndrome bits followed by a dense feed-forward neural network
(DNN) to perform post-processing. The first LSTM layer uses a
many-to-many structure in space and time, i.e., it passes a se-
quence of outputs ﬁil) V't to the next layer given a sequence of
inputs 5(t). On the other hand, the second LSTM layer contracts
these sequences to only the final sequence output, h(t n which
is then passed to a DNN layer. A DNN can be understood as a
conventional network, consisting of layers of real-number valued
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Figure 3. Recurrent neural network (RNN) architecture for logical error
correction given a syndrome-flag volume based on Ref. [51]. All stabilizer
parities and flags are measured sequentially (QEC block), and the network
passes the respective measurement outcomes through two RNN layers

using the LSTM architecture. The interlayer messages ﬁ’:fl)

internal ‘cell state’ 2 combined with the messages EI.(I). This is followed
by a dense neural network (DNN) for post-processing. The latter network
consists of multiple layers of neurons, each equipped with an activation
function, indicated schematically by the small red graphs. All but the out-
put neurons have a rectified linear unit (ReLU) as activation function, and
the output neuron is equipped with a smooth sigmoid function. The out-
put is the predicted logical flip probability. If a flip is detected, a recovery
operation R is performed by applying the corresponding logical operator.

consist of an

neurons, layer-wise interconnected by trainable-weight matrices.
By means of these trainable parameters, the neuron value of the
previous layer and a non-linear function, the neuron values of
the next layer are calculated. The underlying idea of this struc-
ture is that the second-stage DNN can perform a post-processing
step to compute the logical flip parity after the RNN has extracted
the necessary information from the syndrome-flag time series.
The output of the joint network is the probability for the occur-
rence of a logical flip. A restriction of this architecture is that it
can only detect logical errors in either the X or the Z basis at a
time, meaning that two networks have to be trained for complete
decoding. We will denote this type of decoding as single-headed
recurrent neural network decoding (SRNN); it will be contrasted
with a network that predicts both the logical phase- and bit- flip
parity in a single run. This double-headed recurrent neural net-
work (DRNN)[“8:31] and its performance will be discussed in Sec-
tion 5.

Simulation of the quantum memory experiment and training —
To train the network in a supervised manner, a sufficiently large
set of tagged data examples i.e., tuples of (syndrome-flag-volume,
logical parity) information is required. We generate such training
data by the following procedure:

1. A known logical state |y;) is prepared by means of a noisy
projective measurement of stabilizers. For the SRNN train-
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ing, we choose |y;) € {X[ |0,)},, _o, for the bit flip decoder
and |y,) € {Z]" |[+1)}m =01 for the phase flip decoder. For
the DRNN, we choose |w;) € {X;" 10:), Z1 |+ 1)} —01;m.0.1-
Each state obtains an equal amount of samples, and the logical
parity information of the input state m;’l/z € {0, 1} is stored.

2. A number T of stabilizer measurement cycles is performed,
producing a sequence of T syndrome plus flag vectors,
5(1),...,3(T), ie., the schedule in Figure 2b is repeated T
times.

3. The data qubits are measured and a classical round of error
correction is conducted, upon which the final logical parity
m,,, is well-defined.

4. An output label for the NN training is defined as the logical
flip parity m’ = mg‘/z +m. mod 2.

The vector of all syndrome and flag measurements, denoted
as s, is then used as the training input, whereas the logical flip
parity m" may be used as the output label. After the respective NN
model has converged under the training, it is tested with unseen
data that can be sampled using the same procedure but was not
used for the training before.

Decoding results— The error correction capabilities of the fully
trained RNN decoders, including whether they are fault-tolerant,
are presented in Figure 2d. Here, the logical error rate per read-
out round of the described RNN decoders is compared with the
one of a flag based sequential look-up table decoder (LUT) over
a range of physical error rates. The LUT works by sequentially
reading the syndrome and flag values in the readout sequence
and performing the most probable correction of fault weight one
based on at most two readout round intervals. This implies that
all single faults are corrected by the LUT, including hook errors,
for more details see.l¥”] The LUT can be considered as the sim-
plest flag-FT decoder and is used as a benchmark. Both the LUT
and the RNN decoders show a scaling of the logical error rate as
pL p;h (see Figure 2d). This indicates a fault-tolerant decoding
as only two independent faults, each occurring with a probabil-
ity of O(p) cause a logical error. The RNN decoders exhibit larger
pseudo-thresholds and overall a smaller logical error rate com-
pared to the LUT, indicating that they are capable to correct more
faults of weight two or larger by exploiting information and cor-
relations contained in the global set of measurement outcomes
from the multi-round syndrome-flag stabilizer readout sequence.
By pseudo-threshold, we denominate the error rate at which the
respective logical error rate breaks even with the physical error
rate, p; = p,;,- Hence, one can conclude that the employed NN
structure is capable to process the flag information correctly and
thatityields, for the present case, clearly better performance than
a standard, LUT based decoding approach.

3. NN Decoder Interpretability

The problem of explaining complex models can be viewed as the
challenge to create a simpler proxy-model that is accurate to a
satisfactory degree. Hence, any explanation for a model can itself
be seen as a model. Complex models, such as NN, are often re-
ferred to as ‘black-box’ models, in which the inner workings are
not known or understood. Even though neural networks are built
out of modular, simple, and explainable elements, their ‘black-
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box’ nature emerges due to the high degree of connectivity, non-
linearity and from many degrees of freedom.°” *8] For these rea-
sons, approximations of readily trained NNs may be developed to
serve as interpretability models. These explanatory models typi-
cally only capture a particular working regime of the model and
are therefore only “locally accurate,” such as being an approxima-
tion around particular input values. Despite this limitation, they
can still be useful to understand the underlying complex model
such as a NN.

A common method of interpreting NN is to analyze how the
network transforms the input space into the output space by as-
signing credit to input features. Various heuristic methods have
been devised to derive such credit assignment scores.[® 7% %] In
our work, we will focus on one of these scores, the so-called Shap-
ley value; an alternative choice is outlined in the supplementary
material.[®”]

The Shapley value— Consider a game where a coalition of N
players work together to produce a shared result. The result may
be assigned a numerical value, for instance, prize money in a
competition. The goal is to fairly assign credit to each individ-
ual player for their contribution to achieving the shared result.
To assign credit to a single player in the coalition, one analyzes
how the coalition performs with that player compared to how the
team would, hypothetically, perform without that player. It may
be the case that some players only perform well when other play-
ers are present as well, or that certain combinations of players
actually reduce the effectiveness of a team. For this reason, it is
necessary to consider all possible subsets of players to accurately
capture interactions between players in defining a good measure
of contribution for the individual players. A solution to this prob-
lem was found by Shapley.[®] We formally introduce the concept
of the Shapley value following Ref. [100].

To begin, we define a few quantities for discussion about n-
player games.

Definition 1 (Player set). Let N' = {1,2, ..., N} be the set of all play-
ers. Each non-empty subset S C N is called a coalition. The set N is
named the ‘grand coalition’.

Definition 2 (Cooperative game). A cooperative game is defined by
the pair (N, v) where v : 2W1 — R is called the characteristic func-
tion, which maps any coalition S to a real number.

A game in this sense is defined only by its participants and its
characteristic function, without any consideration of the internal
workings of the game. The characteristic function may be inter-
preted as the payoff of the game. The Shapley value is a specific
solution concept for the characteristic function and defined as
follows:

Definition 3 (Shapley value). The Shapley value ¢, is a single-valued
solution concept, given by

BN Y = —

Z (INI -1
M SCA\(])

-1
S| > (S u{i}) —v(S)) (1)

marginal contribution

It may be interpreted as the average marginal contribution of
a player i € M over all possible subsets of players S € N \ {i}.
The marginal contribution is the value a player i would add to
a specific coalition S. The Shapley value has many interesting
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properties,[¥: 191 however its exact calculation is expensive as its
computation cost scales as O(2"V1). When evaluating large neu-
ral networks that process many input features, it is therefore es-
sential to come up with efficient approximations to the Shap-
ley value. We provide references for a number of state-of-the-art
approximations for universal explainability, including linear re-
gression approaches!®- 19171031 and Monte Carlo sampling!'*l all
with O(|N'|) time complexity. In this work, however, we use a
neural network specific method called DeepSHAP introduced re-
cently by Chen et al.,['l which is included as part of the open
source SHAP library.l'®! It makes use of the linearization of a
NN that takes place in the back-propagation procedure. Employ-
ing this linear approximation and performing a modified back-
propagation, it can be shown that for expanding around an en-
semble of average neuron values, the approximate Shapley value
of the input features can be obtained. For a rigorous derivation,
we refer the reader to Refs. [87, 101]. Note that furthermore, the
approximate Shapley value of neurons in intermediate network
layers can also be computed. Studying these values, however, is
not part of this work, but we note that it can be an additional tool
to understand or optimize a NN.

Decoder interpretation— Given a trained NN-based decoder and
the DeepSHAP method to approximate the Shapley value effi-
ciently, we now obtain an importance score for each syndrome
and flag bit in every individual measurement sequence. A mini-
mal example for such an assignment of importance is illustrated
in Figure 4, where a RNN is asked to decode two rounds of flagged
Steane-code stabilizer measurements. On this individual level,
especially for a larger number of measurement rounds, it is pos-
sible to understand from the Shapley value distribution how the
RNN regards certain syndrome(-flag) combinations to determine
the logical flip parity. For instance, low Shapley values for a tem-
porally separated pair of syndrome excitations can be read as the
RNN recognizing this as a measurement error. Further, given the
prediction of a logical parity flip, one can understand that the syn-
drome excitations of the largest Shapley values are attributed to
the faults that lead to this predicted flip.

Apart from interpreting the decoding decision based on this
importance score for individual inputs, one can further interpret
the global working of the NN by analyzing the statistics of Shap-
ley values. One interesting aspect of the inner decision logic of
a NN decoder is present in the context of flag-fault-tolerant sta-
bilizer measurements during a quantum memory experiment.
Here, certain combinations of nontrivial syndrome flag bit pairs
are supposed to hold greater importance as they are expected to
indicate a logical flip. This suggests analyzing the statistics of
Shapley values by inferring the correlation of these pairs of Shap-
ley values corresponding to the mentioned syndrome flag bits.
These so-called Shapley value or plainly Shapley correlations can
be calculated by determining the Shapley values of all syndrome
and flag bits of all input samples and then by empirically calcu-
lating their correlation. We calculate the mutual correlation ma-
trix of Shapley values of syndrome and flag bits that are mea-
sured in the same round of syndrome extraction, i.e. Az =0 in
Figure 5a.

Indeed, we can identify an excess in the correlation of Shap-
ley values for syndrome-flag bit-pairs that are indicative for hook
errors. Generally, there are three syndrome-flag pairings that in-
dicate hook errors. Their Shapley-value correlation can be seen
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Figure 4. Minimal example of the interpretation procedure of the decoding of a two-round stabilizer measurement sequence. On the left side, the
measured syndrome is fed into the NN decoder, which predicts that a hook error and therefore a logical error modulo final correction has occurred.
Based on this run of the decoder (input, neuron activations), Shapley values for the input bits are calculated via backpropagation through the NN. These
Shapley values are shown in color-coded form on the right side.

in Figure 5a. This is a positive verification of the NN’s capabil-  Similarly, for the phase-flip decoder hook error signatures in the
ity to understand the syndrome flag logic to render the propaga-  f,s, Shapley correlations are recognized for Ar = 1. Generally,
tion of dangerous errors identifiable. Note that these signatures  the specific pairings of syndrome flag bits, which are signatures
of hook errors are observed for the bit-flip decoder in the fys,  for hook errors, depend on the specifics of the quantum circuitry
Shapley correlations of the same measurement round Ar =0.  of the syndrome flag measurement. An example of a fault prop-

1.0
05 (b) |
lvr) B

0.0 Sy =
Ancilla O |
Flag 10 |1

4
+) X4 Xk +

Figure 5. a) The mutual correlation matrix of the Shapley values of syndrome and flag bits of the same QEC round (At = 0). Each three-bit segment
bundles one type of bits: syndrome parity or flag parity and X or Z type. The excess of correlation of the Shapley values of the stabilizer bit Sf and flag
bit Ff is highlighted. b) Illustration of the corresponding hook error signature in a QEC cycle. During the first (X type) stabilizer readout, a fault on the
ancilla qubit takes place. The corresponding error propagation on the circuit level is as depicted in c). Besides the error propagation onto the data qubits,
it is also shown how the flag qubit picks up the error. Further, the weight 2 data-qubit error will be picked up as a Z-syndrome in the subsequent (Z type)
stabilizer readout. In d), this Z-syndrome on the Steane code is shown.
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agation, and how it appears as a syndrome and flag combination
during the stabilizer readout that we simulate, is illustrated in
Figure 5b—d.

Overall, flag bits that are measured whilst the readout of sta-
bilizers of a specific basis show the tendency to mostly correlate
with syndrome bits of the respective other basis, as expected. That
is to say, fy, flag bits are relevant to determine logical errors mainly
in combination with s, bits and vice versa. This behavior is con-
sistent with the possible error propagations during the stabilizer
measurement, where the propagation of a hook error is shown
in Figure 5c. Further, the Shapley values corresponding to syn-
drome values of the same basis are correlated, as these natively
indicate the errors on data qubits of the code. During the repeated
stabilizer measurements, single data qubit errors can lead to a
logical fault upon being accumulated. Therefore, to perform a
good decoding, it is relevant for the NN decoder to consider pairs
of syndrome values corresponding to the same stabilizer type, Z
or X, respectively.

The correlation of the importance between X and Z syndrome
bits is less strongly pronounced. Still, it is present at a statisti-
cally significant level. This type of Shapley correlation is an indi-
cator for the network recognizing correlations X and Z errors in
the noise processes, which is present in our depolarizing noise
model due to the presence of independent Y errors. The correla-
tion of X and Z errors naturally carries over to the syndrome data,
where now for instance the X syndrome carries partial informa-
tion on the presence of X errors. If the NN decoder is given the
full syndrome information, one might ask whether the NN has
detected such correlation at all during the training or whether it
is able to make use of it. By analyzing the Shapley correlation of
X and Z syndrome bits, this question can be answered quantita-
tively, as shown in Figure 5. Hierarchically speaking, the Shapley
correlations of the X and Z syndrome are weaker than the mu-
tual correlation among one syndrome species. This is expected as
the correlation due to Y errors can only be an additional but not
the main factor for determining a decoding decision. The bare
presence of Shapley correlations of X and Z syndrome bits alone
shows, however, that the NN decoder, after training, is aware of
the Y errors. Summarizing the hierarchy of Shapley correlations
between syndrome-flag bits, the pairing that indicate hook errors
are pronounced most strongly, as here single errors, if decoded
incorrectly, can cause a logical flip. Other syndrome-flag pairs of
the type (S%, FX) as well as pairing between syndromes still show
modest Shapley-value correlations.

4. Monitoring the Learning of Fault Tolerance

It is an interesting question to ask how a NN learns certain com-
petences during the training. Being able to answer this might
provide insights that can help in optimizing the learning process
or to stop it at a suitable point. In the context of fault tolerance
in decoding, we aim to investigate this question in order to re-
liably determine when a NN decoder has learned to correct all
single faults (for a distance-3 code). We analyze thereby the pre-
viously introduced RNN decoder and how it is learning to handle
FT-breaking hook errors correctly in the Steane code with a flag-
based readout scheme.

In order to do so, we approximate Shapley values for network
instances during the training. As in the previous discussion, we
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aim to interpret the networks’ capability to correct for hook errors
by means of Shapley value correlations that align to signatures of
hook errors. Such Shapley correlations are now resolved over the
training time. Hence, it is of interest how and when the RNN de-
coder becomes fault-tolerant and whether we can deduce a good
indicator of this learning transition in terms of the Shapley cor-
relation.

To this end, the RNN model is saved after each training epoch;
a training epoch being defined as the RNN having seen all train-
ing data once in a batchwise fashion. The latter means that the
RNN is updated based on a gradient estimation with a subset
of the training data, namely a batch of it. For each of these net-
work instances and a verification data set, the Shapley values are
calculated, and the decoder performance is tested. We quantify
this performance in different ways: First, in Figure 6b we show
how the fidelity for different physical error rates behaves along
the training. Further, we access in Figure 6¢c whether the RNN
decoder training instances are FT. To this end, we show (i) the
scaling exponent a of the logical error rate per round against the
physical error rate, i.e. p; « p;h, where a value close to 2 would
indicate FT as at least two faults are needed to induce a logical
error. Further, (ii) the figure shows the fraction of logical faults
occurring for the generation of all possible weight-one fault tra-
jectories for two QEC cycles using a deterministic error placer
(DEP). The DEP works by iterating over all possible circuit loca-
tions where a fault could occur, and placing the fault to evaluate
whether the RNN decoder can recover the initial logical state or
not. Furthermore, we aim to quantify the evolution of how well
the NN understands to consider the FT-breaking hook error sig-
natures for decoding. We do this by means of the correlations
between Shapley values as shown in Figure 6d, where we com-
pare two classes of Shapley value correlations: one corresponds
to the hook error signatures, while the other is not related to the
question of FT and serves as a baseline.

All of these figures of merit are evaluated for a single-output
LSTM bit-flip decoder trained using 100.000 training samples.
Without decoding, a logical error occurs roughly for 4% of the
weight-one fault circuits in two QEC rounds as sampled with the
DEP. Given this, one can understand the early stages of the train-
ing of the network. Here, as can be seen in Figure 6c¢, the failure
rate of the RNN decoder is 4% for the first ~20 training epochs.
While the network is on this plateau, it always assigns the triv-
ial correction, which is not to perform any correction, indepen-
dent of the syndrome. Note that also the infidelity in Figure 6b
starts off with a plateau, which as well corresponds to the pro-
portion of Monte Carlo samples which do lead to a logical er-
ror. Eventually, for the shown training process, the NN leaves the
local loss-function minimum of assigning the trivial correction.
At around epoch 16, the decoder starts to be able to decode the
first few logical errors effectively, and it becomes fault-tolerant at
epoch 27. At around the same time, the infidelity starts decreas-
ing, but it keeps decreasing well beyond the point where the net-
work achieves fault-tolerance.

A corresponding evolution of the averaged hook error Shapley
correlations for the bit-flip SRNN decoder is shown in Figure 6d,
where as a reference the average Shapley correlations of syn-
drome flag bit combinations, which do not correspond to a hook
error, is shown. Interestingly, both curves start to deviate strongly
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Figure 6. Monitoring the training of the RNN over 50 epochs. The learning of the handling of FT signatures (example in (a), blue) by the NN is shown.
For that in a) the two syndrome-flag pairs are illustrated. Here, the trivial (orange) combination corresponds to a weight-one data qubit error, while the
hook error signature (blue) indicates a weight-two data qubit error. In b) the logical infidelity is displayed for different physical error rates. Sub-figure c)
shows the correlation of Shapley values of pairs of syndrome and flag bits that either indicate a hook error (blue) or are not relevant for FT (orange).
According examples are given in (a). In d) two figures of merit to quantify the FT of the decoder are shown. In blue, the scaling exponent of the logical
error rate per round with the physical error rate is plotted. Further, a deterministic error-placer (DEP) is employed that iterates over all possible single
faults in two rounds of QEC. For these instances, the orange curve shows the ratio of single faults that are uncorrectable for the RNN decoder.

when the FT performance indicators start to improve. It seems
that all Shapley correlations increase first, although the ones that
do not correspond to hook errors are quickly overtaken by the
ones corresponding to bit-flip hook error configurations. After
this break-even, they flatten out and start decreasing again. One
can conjecture that the network initially decreases the loss func-
tion by attributing importance to incorrect flag-syndrome combi-
nations, perhaps simply using the unspecific activation of both,
syndrome and flag as a marker of logical errors. But then the NN
quickly learns that only specific combinations are important for
a good decoding. Altogether, the deviation of the two correlations
can be used to track the starting point of the processes to learn
the significance of the flag bit for the NN, yielding a first indi-
cator for the start of the FT learning process. Around epoch 30,
the NN has managed to become FT as the logical error scaling
exponent reaches a stable value of 2. This FT decoding behavior
is corroborated by the DEP test, which does not show any resid-
ual uncorrected weight-one faults. Accordingly, the Shapley value
correlation of the bit-flip hook configurations flattens out above
a value of 0.25. This logistic behavior can be taken as a signal for
the termination of the learning process of FT. The performance
in terms of the logical error rate, however, continues to decrease
further and one could even see minimal improvement beyond
epoch 50. The reason for this is the learning of how to correct
more weight-2 faults that occur. Despite this being an, in prin-
ciple, desirable effect, one needs to carefully choose the point of
termination of training as this learning of specific higher-weight
faults, present in the training data, might be seen as over-fitting.
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For this reason, it is important to evaluate the network perfor-
mance and properties for an independent data set as done in
this analysis.

5. Diagnosing NN Malfunction for the Two-headed
NN

The second Steane QEC decoder we will analyze in more detail
in the following is based on a recurrent neural network that has
two output neurons, each for predicting one of either logical bit
or phase flip error parity. This network structure can be seen as
an augmentation of the previous one, and it is also similar to the
ones studied in Refs. [48, 51]. This means that both error types
can be decoded within one forward-pass of the network, given
the full syndrome flag volume as input. Using such a network,
keeping the overall network size fixed, practically halves the com-
putational cost of the decoder. However, the more important mo-
tivation for this proposed architecture is to harness the correla-
tion between X and Z syndrome more directly to potentially im-
prove the decoding performance. The hope is that by predicting
the logical X and Z parity in one pass, the network can more ef-
ficiently integrate these correlations in its decision-making pro-
cess as both syndrome species are treated on the same footing
in the training procedure. To underline this reasoning, one can
think of the single output architecture; for it, half of the input in-
formation (e.g., the Z syndrome to correct for X errors) has far
greater importance to compute the logical parity compared to the
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Figure 7. The Shapley-correlation analysis for the dual output RNN decoder, that is predicting simultaneously logical bit and phase flip parity. In a) the
typical syndrome flag signature for a Z-type hook error is shown, which stretches over two consecutive QEC cycles. In b) the Shapley correlation for the
logical phase flip decoding is shown, the quadrant of the expected syndrome flag correlation excess according to the hook signatures is highlighted. In c)
the Shapley value correlations between syndrome and flag bits of two consecutive rounds for the logical bit flip decoder are shown. An excess of Shapley
value correlations in the same quadrant as for the phase flip decoder can be observed. These syndrome flag pair, however, carry no special information
on the logical bit flip parity. In consequence, we can take these correlations as a sign for an incorrect use of phase-flip decoder logic to detect logical bit

flips, pointing to a malfunction of the network.

other part such that the less important part of the input might be
pathologically underused.

For training the network, one must consider that labels of the
desired decoder output are incomplete for each sample since for
each execution of the memory experiment, the logical state can
only be read out in the X or the Z basis as it would be the casein a
real-world experiment. This problem can be mitigated by using,
alternatingly, only one of the output neurons for the backpropa-
gation during training. In this setting, the cost function that is
minimized adapts dynamically depending on the measurement
basis to evaluate the correctness of the prediction of the appro-
priate output. Upon successfully training this new NN decoder,
we will now investigate its performance and Shapley value cor-
relations. In Figure 2, the logical error rate of the dual-output
decoder can be compared to two single output LSTM networks.
The single-output network variant outperforms the new archi-
tecture by quite a margin, reaching a pseudo-threshold at phys-
ical error rates roughly twice as high as for the dual-output de-
coder. We conjecture that there may be some unwanted inter-
nal network interference between the two computations of the
respective logical parities, which causes the dual output LSTM
network to underperform. This observation opposes the architec-
tural ansatz to improve the decoding precision by having a dual
output.

In the following, we analyze the decision-making of the dual-
output NN decoder based on the Shapley interpretability method
further. Let us first consider the syndrome-flag signature of hook

Adv. Quantum Technol. 2025, 8, e2500158 €2500158 (10 of 13)

errors that would cause a logical phase flip. These generally span
over two consecutive QEC cycles. An example of such a syndrome
flag pair is illustrated in Figure 7a and rigorously all such sig-
natures are given by the combinations (F, S‘*A‘) at At =1 for

j=1+1 mod 3. Naturally, it is important for the phase-flip de-
coder to recognize these signatures. In the correlation plots of
Figure 7 (b) this can be seen as a correction excess when consid-
ering the dual RNN decoding of initial |+, ) states against logical
phase flips. In sub-figure Figure 7 (c) the Shapley correlations
for the bit-flip decoding with the dual RNN decoder is shown for
syndrome-flag combinations of subsequent readout rounds, i.e.
At = 1. These correlations are not expected to show any excess,
as no bit-flip hook error signatures exist here. On the contrary,
the correlation excess of the phase-flip decoding in sub-figure,
Figure 7 (c) can be observed as an artifact in the correlation struc-
ture of the bit-flip decoder in sub-figure Figure 7 (d).

This signature is an indicator of a badly tuned network where
both species of syndrome and flag information influence the de-
coding decisions mutually. This mutual influence should in prin-
ciple enable a better correction of correlated X and Z errors that
originate from Y errors. We observe the opposite, that the per-
formance of respective bit- and phase-flip decoders is decreased,
as shown in Figure 2d. The understanding of this observation
can now be aided by the previous discussion of Shapley corre-
lations in the bit- and the phase-flip decoder. It seems that the
RNN is not able to discriminate the respective information on

© 2025 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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bit- and phase-flip errors to a sufficient degree. Correspondingly,
in this architecture, the phase-flip error-information can be seen
as noise for the bit-flip decoding, rather than as additional infor-
mation and vice versa. It should however be noted that the correct
hook error configurations are still most pronounced and that the
dual-output network can still decode both syndrome bases fault-
tolerantly. Altogether, this is a minimal example of the interpre-
tation of a NN decoder where light could be shed on an internal
malfunction that was noticeable as a sub-optimally performing
decoder. As a consequence, for the double-output architecture,
we observe that this malfunction overshadows any positive effect
of exploiting correlations of X and Z errors, which should poten-
tially be more feasible for this NN architecture.

6. Conclusion and Outlook

In this work, we have employed an efficient local interpretation
method for NNs, the Shapley value approximator DeepSHAP.[11]
We have used it to explain the decoding decision of a RNN-based
decoder for fault-tolerant operation of the Steane QEC code. The
specific LSTM-based RNN architectures we analyze as examples
are inspired by earlier works.[*® >1] Our simulations confirm that
these networks can be trained to become fault-tolerant decoders,
and that they outperform sequential look-up-table decoders by
a significant margin. We derive an indicator, based on Shapley
value correlations, of the NN for having learned a fault-tolerant
decoding behavior. This understanding is based on the flag-fault-
tolerant readout scheme that is used to measure the stabilizer
generators of the Steane code. Evaluating appropriate Shapley
value correlations is thereby independent of the performance
analysis of the decoder. For simulated quantum memory experi-
ments, the analysis of the scaling of the logical error rate with the
physical error rate or the extensive placing of errors is a viable way
to confirm FT. In an experimental setting, however, where this is
not possible, the analysis of Shapley value correlations yields an
alternative criterion.

In our work, we further analyze the learning of correlations by
the recurrent neural networks to determine a decoding decision.
Most notably, we can identify all hook error signatures and corre-
lations between X and Z errors. For future works, it can be inter-
esting to consider other importance scores than the Shapley value
which are suited more naturally to calculate feature-correlations,
such as, e.g., the so-called ‘Shapley interaction values’.[”” %]
Lastly, we present a dual output LSTM network, decoding X and
Z in parallel, which shows suboptimal performance after train-
ing. Employing our interpretability framework, this suboptimal
performance can be understood. We suggest this method as a tool
to analyze shortcomings of NN decoders also in other settings to
aid in the network-engineering.

In future work, it may be interesting to observe if and how
neural-network decoders are able to handle noise models which
include error types such as qubit loss, spatially correlated errors,
biased noise, and non-Markovian noise. Moreover, it would be
interesting to see how XAl explanation techniques can be used
to optimize performance of NN-based decoders, both for the dis-
cussed Steane code but also for different and larger codes as well
as for general more complex FT protocols. Here, interpretable
neural-network decoders could aid in the theoretical analysis of
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such larger codes by identifying and highlighting key features
which neural networks were able to learn. Going beyond the
task of decoding, the interpretability methods presented in this
work are also applicable for other NN-based solutions in the
wider field of quantum error correction and quantum comput-
ing. Here, depending on the problem setting one has to clarify
the relevant interpretability questions to be asked as we have
done in this work in the context of error propagation and FT.
It would furthermore be interesting to analyze the internal dis-
tribution of Shapley values in the NN to open the black box
even wider.
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